MST

Contador de Chorro Múltiple

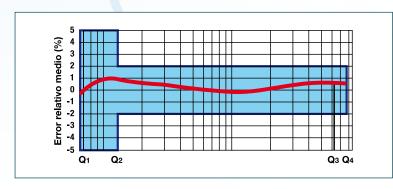
- Aprobación según Directiva 2014/32/UE con Ratio R100
- Pre-equipado con tecnología inductiva para la lectura remota

MST

CHORRO MÚLTIPLE

Rango Dinámico hasta R100 para instalación horizontal según Directiva 2014/32/UE.

Pre-equipado con tecnología inductiva bidireccional para lectura remota.


CARACTERÍSTICAS PRINCIPALES

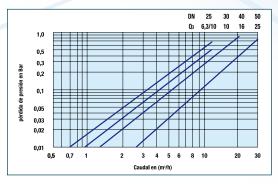
- Los contadores modelo MST están certificados con Declaración de Conformidad de acuerdo a la Directiva 2014/32/UE y según norma EN ISO 4064:2017 y su transposición en el RD 244/2016.
- Totalizador **super-seco** de fácil lectura, fabricado en materiales termoplásticos muy resistentes, orientable 360° y herméticamente sellado por ultrasonidos para evitar su empañamiento. Lectura directa de 8 rodillos, con 2 ó 3 rodillos rojos y dos agujas para mayor definición.
- Todos nuestros totalizadores son intercambiables entre los distintos modelos. Alcanzan protección IP67 (con IP68 por periodo menor a 1 semana) y opcionalmente totalizador de **cobre y vidrio** (**IP68** permanente). La numeración es alfanumérica según código SPDE.
- **Transmisión magnética**. Ningún engranaje en contacto con el agua. Se reduce el número de componentes inmersos en agua aumentando la fiabilidad del contador.
- La concepción de la cámara de medida se ha desarrollado para que el desgaste sea mínimo con la presencia de aguas menos limpias.
- Pletina intermediaria separadora de las partes húmeda y seca.
- **Gran sensibilidad y fiabilidad**, manteniendo las características metrológicas a lo largo de los años.
- Los componentes están fabricados con materiales de elevada resistencia y calidad, plásticos técnicos y acero inoxidable, todos ellos dentro de lo dispuesto en la normativa para elementos en contacto con el agua apta para consumo humano, RD 3/2023.
- Sistema de regulación exterior colocado a la salida que garantiza el mantenimiento de la curva del contador después de su ajuste en banco. Protegido contra la manipulación por un precinto metálico.
- En la tobera de entrada está alojado el filtro que constituye una protección eficaz contra influencias externas. Permite su extracción para limpieza sin necesidad de romper los precintos de verificación, minimizando los costes de mantenimiento.

UTILIZACIÓN

• Los contadores MST están especialmente destinados a la medición de agua potable hasta 50°C. Son recomendados para instalar en lugares de medio/alto consumo. Se recomienda que su montaje sea totalmente horizontal, ya que en esta posición se garantiza su exactitud y una vida útil mucho más larga.

Curva de errores

MST


- •DN25 Q₃ 6,3 m³/h
- DN25 Q₃ 10 m³/h
- •DN30 Q₃ 10 m³/h
- <u>•DN40</u> Q₃ 16 m³/h
- DN50 Q₃ 25 m³/h

Módulo B

n° TCM142/14-5239

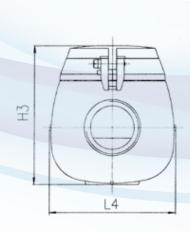
Módulo D n° 0119-SI-A002-10

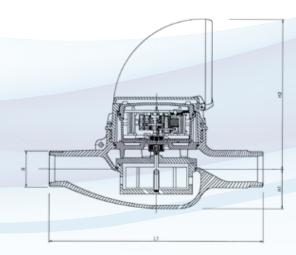
Curva de pérdida de carga

DATOS TÉCNICOS

Características Metrológicas Directiva 2014/327UE y EN ISO 4064:2017

IDO TOUTIEUT/								
Diámetro Nominal	DN	mm	25	25	30	40	50	
Caudal Permanente	Q_3	m³/h	6,3	10	10	16	25	
Ratio R	Q_3/Q_1		R <u>atio 100</u> H					
Caudal de Sobrecarga	Q_4	m³/h	7,88	12,5	12,5	20	30	
Caudal Transición (precisión ±2%)	Q ₂	l/h	100,80	125	125	256	400	
Caudal Mínimo (precisión ± 5%)	Q ₁	l/h	63	100	100	160	250	
Caudal de Arranque		l/h	25	27	27	63	90	
Presión nominal	PN	bar			16			
Pérdida de carga a Q ₃		bar			ΔP63			
Temperatura			T30 y T50					
Perturbación del caudal		U0/D0 (sin tramos rectos antes y después del contador)						
Indicaciones de cuadrante Indicación máxima Indicación mínima		m³ I	99.999 999 0,02		.999			
Certificado de Examen Modelo CE			TCM 142/14-5239					
Emisor de pulsos		l/imp			1			




<u>Dimensiones y peso</u>s

Modelo

			MST3525	MST6025	MST6030	MST10040	MST15050			
Diámetro Nominal	DN	(mm)	25	25	30	40	50			
Roscas del contador*	R	Pulg.	G 1¼.B	G 1¼.B	G 1½. E	3 G 2 B	G 2½. B			
Longitud	L1	mm	260				300			
Altura	H1	mm	48,5			57				
	H2	mm	142			168				
	Н3	mm	113,5			137				
Anchura	L4	mm		108		140				
Peso		Kg	2,4	117	2,539	4,687	5,550			

^{*} Según ISO 228-1

TELELECTURA

La esfera está preparada para la fácil colocación de un emisor de impulsos con tecnología inductiva bidireccional o si se desea acometer un proyecto de telelectura, se pueden acoplar módulos de radio con distintas tecnologías inalámbricas disponibles.

Sistemas de telelectura disponibles:

- Modulo MyWater 2.0 con tecnología Wireless M-bus + LoRaWAN o NB IoT (ver ficha técnica del módulo MyWater 2.0) versión Add-On.
- Módulo de radio ARROW EVO con tecnología Wireless M-Bus OMS 868 MHz según el estándar europeo UNE EN 13757-4 (versión Add-On).
- Módulo de radio ARROW^{MAN} 169 con tecnología Wireless M-Bus (versión Clip-On con totalizador plano).

Por la evolución constante de las tecnologías de comunicación, Conthidra está en permanente desarrollo de productos y sistemas por lo que se aconseja consultar las soluciones que se pueden instalar sobre nuestros contadores.

Revisión: Octubre 2024

@ConthidraSL

Cohisa-Conthidra

